skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yanega, Doug"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sex‐associated differences in behavior can have large ecological consequences, especially in plant–pollinator communities where floral visitor behavior affects plant reproduction. Whether these differences are prevalent enough to impact community‐level processes, however, is unknown. Using 256 plant–pollinator communities, we built networks where the floral interactions of each sex were modeled separately, comparing observations to simulated networks where sex was randomized. We found that (1) in many species the sexes differed in their network roles and visited different partners, with females tending to visit more species and more peripheral species than males; (2) more generalist species differed more in network roles between the sexes; and (3) networks where nodes were separated by sex were more specialized than simulated networks, but were similarly resistant to perturbations. These findings suggest that despite variation among species, sex‐associated differences in behavior are large enough to impact the network roles of male and female pollinators and common enough to influence the interaction patterns of entire plant–pollinator communities. 
    more » « less